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FOREWORD 'C

The ORO research group to which the authors of this paper are assigned

just completed the transportation, phase of a study of computer-assisted strategic

planning for, the Army. * A central difficulty in such planning is analysis of major

transportation networks:, so that one objective of the research was programing a

dtial computer to .carry-out network analysis in 'A manner conforming with:

Army requirements:., This in turn called:,for the adapttionor creation of a

suitable algorithm.,

The solution obtained -does the. following.

(a), 1.Eor any existing rail or highway net,
determines, the, maximum tonnage that can be
moved from any number of specified 't sources"
(e. g., posa and. beahesf:to any number of
spe',ified-idestinations (e. g., depots in the
Communications Zone of a military theater of
operations,, or Ary supply points).

(b) For any tonnage requirements at
the destinations less than or equal to the max-
imum, determines the routings necessary to

O deliver such tonnage.

(c) Subject to (a) and/or (b) above,
determines the minimum-distance' routings ,

to accomplish the required deliveries.

S int (d). Determines, for each routing

. in the solution, the tonnagecflow over each
individual link.

*Reported in ORO-T-393, "Computer-Assisted, Strategic Logistic
Planning: Transportation Phase", , now in publication. -

iiJ
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I ~The computer program thus ,obtainable prints routes, with link and

junction point designations, in the, form required a input to the subsequent

steps of the transportation planning process.
[5

A fulldiscussion of the application and some discussion of the algorithm

is beingJ made available in ORO-, T-393;.to which -readers, interested in these as-

pects are. referred. It was decided to restrict the present paper entirely to the-
formal statement of the mathematical problem underlying the algorithm, with

its solution and the required proofs.

The aim of the'work was to develop an algorithm tailor-made, to the

Army's requirements. The, most directly applicable ideas in the literature were

studied and adapted. Thus the. results in this paper are not entirely original but

constitute in part an adaptatIon of known methods, to a specific new application.

However, the ideal solution* yielding a minimum "cost" or "distance"' flow

pattern for every quantity of flow up to the maximum, with the associated cost

profile, * are considered to be novel.

Strother H. Walker, Chairman
2'Logistics Gaming Group

-77,K

A.'4 4 November 1960

" / *See definitions below, p 22 and p 23respectively.
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ABSTRACT

c1

A procedure is present'ed for solving the following problem:

Given a finite network , with a capacity
and a length (or cost fa~tor) associated with
each orientation of every link, find, a farnily
of minimum-cost "flow patterns between two
specified nodes, one pattern for every
integral amount of flow up to the maximum'
consistent with link capacities.

The, procedure is a,' iterative processthat adds. a succession of'

appropriate elementary chain flows in such a way that each new pattern

minimizes cost for a greater amount of flow., The presentation is

intended tobe se!foontained and includes a proof of the validity of the I{.

procedure..

K.''
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INTRODUCTION

SThis paper presents a general procedure for: solving the: -following,

abstract network flow problem: Given a finite network, whose links have--as-

signed capacities and lengths (or cost factors), find a famfly of minimum cost

flow patterns between two ispecified nodes,, one pattern for every integral.

amount of flow up to, the maximum consistent with link capacities.

The first section defines the basic network terms and symbols 'employed

throughout the paper. A number of lemmas that are. consequences, of these

definitions' are also; established here. The second section presents an iterative

procedure that is shown to solve the: stated network problem,. under the as-

- sumption that an'algorithm with. certain characteristics can- be devised. The

final section .of the paper produces this, algorithm and proves that it has the

required characteristics. A glossary of the principal symbols, appearing in

the development is included at the end.

Some of the basic ideas introduced in the paper are illustrated

geometrically. However, the mathematical development does not rest on

geometrical ortopologicat considerations. It should also be noted that net- /

work theory, including the specific topic of this paper, is .applicable to

problems in which thel relevant network is, not a, physical structure connecting

points in, space. Whereas network links may be interpretediaa transport routes,

they may also be interpreted as the set of permissible, information channels, in

an organization or as the set of possible tran,tions between the various states.

of-a 7system. ...

31



PRELIMINARY DEFINITIONS AND LEMMAS

BASIC NETWORK TERMS

A ,'network'" consists of a finite set of distinct elements N1, N2 , .,."N,

-called "nodes",,, together with a subset of all unordered pairs (Ni, N.) that can be.

formed from distinct nodes'N. and N.. The elements of this subset are termed A

the "links" of the network. These are necessarily finite, in number, an upper

'limit on the number of links being .|k(k-1)]/2, where k is the number of nodes.

(This is the number of links if every pair of distinct nodes determines, a link.)

If an ordering is assigned to the nodes of a link (Ni, Nj) designating N. as.

the first, or "initial.,uode" and N as the second or "terminal node", . the re-

sulting 3bject is termed a "directed link'from N to N. and is denoted by NJ N.

Thus two directed links, Ni, N. and N., N., can be associated with each link.

It is convenient to. introduce a representative set of directed links called

an "enumerating set." If a network has n undirected links, an. enumerating set

for'this network is any set of n directed links. such that each undirected link, is

represented by precisely one of the two directed links, associated with it. It is

evident that there, are-2n distinct enumerating sets that can be associated with

a network. The function of such a set is to establish for each, link a convention

as to which, direction will be considered positive in describing flows through

the, network.

Any network can be represented bY a simple geometrical structure in

three-dimensional. space., Let any k distinct points represent the k nodes. For

4-

[.



each link (Ni, N.) of the network construct a simple curve, having the corresponding

points as end points, that contains none of the k-2 points corresponding to other

nodes and that intersects none of the curves representing other links, Such a

structure is termed a "linear graph," FVigure la illustrates a simple network

having 6 nodes and 8 links...

If A and B are distinct nodes of a network, an "A/B path" is a finite set

of directed links that can be assigned an. ordering Mi,j Nj, i 1, 2, ... , m (m

being the. number of links) so that M= A Nm = B and N. = M'i for-

i = 1,. 2, . 1 , -i. A and: B are.termed the "initial" and "terminal" nodes_

of the piath respectively,,, Figure lb represents a path from N to N since the

directed, links can be ar.ranged i the following sequence: N6 , N3 , N3 N2 , N2', N4 ,

",; Nl Ng, 2' N2 , N5 . Anetwork is said to be "connected" if for every pair of

distinct nodes A and B there exists, at. least one A/B path. Note that if a network

is, connected in this sense a linear graph constructed to represent the network is

a connected point set in the conventional sense of connectedness.. In the, remainder

of this paper all networks under consideration are assumed to be connected.

A "loop" in anetwork is a finite set of directed links that can be assigned

an orderingM.,Ni, i=1, 2,. .. , m, such. that Mi N and N. M for
In I 1+ 1

i. =1, 2, ..... ,m-1.* Figure- !c is anexample of a loop.

Note that the same directed link may. appear more than once in an A/B

path, or a loop and that. both M, N and N, M may appear. If the same directed

link appearsk times, it is. considered as being enumerated k times in the set

lof links that defines the path or loop. '- -

* Note that a loop could be considered as an A/A path. In this paper it
is never categorized as such, however.

5

0 "



a.Njetwork configuration'

b.- An. N IN5 path c.- A loop

d. N Nchain e. "A cycle,

~6. '

Fig., 1-Illustration of Basic Concepts
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Since the links that form a path or ioop may be arranged in. asequence of

the form M M2 M2,M3, . .-. M Mk, it is frequently convenient to represent

apathor loopby the more concise notation M,M 2 , ... , Mk where the notation

represents an MI/Mk path if M and a loop if = Mk. It should be noted,

that this representation is, not. in, general unique, however., For example

M' M2 M3 , M1 ', M M2 , M5 and M1 M4 , M M 'M M 'M ' M5 both represent the,

same M1 /M5 path, since they are composed of the same 6 directed. links.

An "A/B chain" is defined to be an., A/B path such that the iiiitial nodes

(and consequently also the terminal nodes) of its directed links are all distinct.,

Simila.qy a "cycle"' is a loop such thatthe initial (or terminal) nodes of its

links; are all distinct. If interpreted geometrically, chains and cycles correspond

to simple or nonintersecting curves in a linear graph. Figures Id and le

illustrate: an N6 /N 5 chain.ad a cycle respectively. As i result of these defim-

nitions, a chain has a, unique representation of the form M1, M2, . . ., Mk,

and the representation of a cycle is unique except for cyclic permutation of its

links. (For example, M 1 ,M SM 2 ' ,M1 and M 2 ,M 4 9M1 ,M 3 ,M 2 represert

the same cycle.)

CAPACITATED AND WEIGHTED, NETWORKS

If a network has k undirected links,, and a nonnegative integer ,termed a

"capacity" is associated with each of the 2k directed links, the network is termed

a "capacitated network." The capacity of a directed linkM L N is denoted by

c(M, N). The capacities need not, be symmetric, i.e.., it is permissible that

c(M, N) 4c( NM). The link. capacities serve as upper limits on the rate of flow

7
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through the corresponding links in the subsequent, discussion. If the network is

a mathematical model of a, transportation network, capacities might have

the. dimernsionality "tons per unit time.

If'a nonnegative real number called a ",'length" is associated. with each of

the 2k directed links of a ,network, the network is considered 'weighted." The

length of a directed link M,N is. denoted by l(N). Here again the lengths need

not be symmetric. These lengths serve as weighting factors applied to the

amount of flow in each link in the subsequent discussion. Depending on the ap-

plication, the length. of a directed link may be an abstraction of physical length,

cost per unit of flow from the initial to the terminal node of the link, or some

other attribute,

If a represents a path or loop in a weighted network, the "length of.a",

denoted by (a), is: defined as*

1.l~ lMN):

In particular if a is the M/N path consisting of the single directed link M, N,

l(a) l(M, N); thus there is: no numerical ambiguity in using the symbol "1"

for'both the concepts ,of link length and. path or loop length.

- '-A

*In this equation and in other places where: there is no: ambiguity, the
notation .'M is used in place of the more cumbersome notation M

8.. . . . . .... . .. . .. ~ . . .. .: . . . . .. . . -
' ' " ' V.
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LINK, FLOWS AND FLOW PATTERNS,

Consider now the concepts of link flows and-flow! patterns in a network.,

A flow in a link is a nonnegative integer p associated with a particular orienta-.

tion of the link., If the flow is designated as being from M to. N in link, (M, N), a

flow f is designed for each of the directed linksM, N and N,M as follows:

f(M,N) p; f(N,M) -p

Thus the flow value associated with a directed link is negative if the direction of

the link is counter to the. assigned di rection of the flow otherwise it is positive.,

Note that since f(M, N) =-f(N, M) it is' sufficient to prescribe: the values of f for

an enumerating set inorder to establish flows for all directed links of the net-

work. If f(M, N) = f(N,,M) = 0, it is still convenient in some contexts to

arbitrarily consider the flow as being "from'" one node "4o" the other.

If a flow is assigned. to a link (M, N) of a capacitated network, the flow

is said to be "feasible" if

-c(N, M) < f(M, N) < c(M, N)

or equivalent if

-c(M,N) <f(N, M) c (N,M)

If f(M, N) =c(M, N), the directed 1ink M,.N is said to. be "saturated" by the flow.,

A flow saturates both directed links M, N and N, M only in the trivial case where

.c(M,N)=cNM)=f(M, N)=0*

. .*For if f N) = c(M N,)land f(N M)=(N, M),, it follows-that c(M, N), + .c(N, M) = 0,
since f(M, N) + f(N, M) = 0. But since both capacities are nonnegative, both must be zero.

.. I_ 9
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It is important to stress the fact that one cannot independently assign,

flows to: each directed link of a pair., although it. is .evident from, the preceding
definitions, because f(MW) and f(,).are two.equIvalent representations of,

the. sameflow, which is best thought of as avariable assigned to, the undirected

Consider a network in which a flow is assigned. to every link.. Then if

a node M is. fixed and any enumerating set S is: selected,, the expression

.... M fixed

represents the total flow away from node M minus, the total flow into node M for

those links whose representative in S has M as: init-i. node. Similarly

f(P') M fixed

S

represents the total flow into node M minus the total flow away from node M
for those links whose representative inS has M as terminal node. Thus the

function

Y(M f(M-) - f(PM), M fixed

S S

represents. the total flow away from node M minus, the total flow -into node. M.
Y(M): is termed the "nhet outpvtt at. node M," The function Y is independent of

the enumerating set S since f(MN) = -f(NM). f the, representation in S of a

. .10,

-- 
- - -----------



link ischanged from M, Nto N,,M,- thieeffect is mertelyto tranisfer aterm from

one of the above summations to, the other,, with. a corresponding changel of sign.

If A, flow is assigned to ever, link of a network. and Y(P) =0 at every node!

P except possibly A and. -,then it -is readily shown that Y(A) =! -Y(B),. because

f R-N): - If(N, M)Y 0 (1

S S

since each M,NeS appears once in each summation. -Also nY(P) hY(A), which

P*13
can be writtenL as

(M, N) - f(NM) Y(A)(
S S

MV=B Mt-B

Subtracting Eq. 2 from Eq. 1

N - f(.My= -Y(A)

but the lefthand side. s Y(B) by definition. If Y(A) > 0, the assignment of flows

A is termed, the "source"', and B -is termed the "'sink." if F represents an, A/B

isab wrte as te vle"o hefo pten

the symbol V(F) is also used to denote itsvalue. V(F) is neces-

saiyan integer since all link flows "are integers -by definition. 'If Y(P) 0 for

everysnode P, the assignment of flowss termed a "zero flow pattern." (in"

somecontexts it is convenient to consider a zero flowoattern as. anA/B flow

A is ter e vae srce" Tod B i reh sn.:.i rpeet n /

pattern.oe vale sinzeo Tow sum re an assignment of flows to thesoecnet ti /nein ocnidrazr~lwptena n./ fo

.,://< '>, 11

.... ptten, hos ,vlueis zr0:) T ,simmriz, a assgnmnt:of low tothe '-



links of a network is a flow pattern in this paper if, and only if, Y(P) 0 for at'

most two nodes.
If F1 , F 2 . , Fn are A/B flow patterns (some; or all of which may

have the. value: zero).and if f ,-N), f2(M )., . ... "' fnN) N) represent the

corresponding, flows in an. arbitrary directed link lM,, N, then the patterns are

said tol be "conformal" if for every link M, N either fi(M, N>.0 for

i'=1, 2, . . . , nor fi(MN)< 0 for i = 1, 2, . . . , n.. Expressed differently

they are conformal if there is no link such. that there is nonzero flow in one

direction relative to. some F. and nonzero flow in the other-dfrection relative to

ome other F"::<

An algebra of flow patterns can be defined. IfUF and G are A/B -flow

patterns (where the possibility of zero flow patterns is included) and. f(M, N)-and

g(M, N), denote the corresponding flows in an arbitrary directed link M, N, the

sum of F and G,. denoted by F@ G, is defined as follows: for every directed

link M, Nlet Ih(e N) =r ftN) + g(M,' N):. The values of h then determine, the

link flows of FOG. Clearly FG( G is also an A/B flow pattern, whose value

ls V(F)+ V(G).

Similarly F( G is defined by the, relation h(M, N)= f(M N) - g(M N. In

this case if V(F) > V(G), F.OG is an A/B flow pattern of value V(F) - V(G). In

the contrary case F®P G is a B/A. ow pattern of value V(G) - V(F).

Elementary'Flow Patterns

Certain elementary flow patterns corresponding to paths !and loops play a

central role in the subsequent development. If P is an A/B path or loop,. Ifra

:', 12
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J positive flow of m units, is assigned to each lInk M,,N ofP (and necessarily also

a flow of -m units is assigned to N, M), and if zero flow is :assigned to all other

links of the network, then this assignment is called an "A/B path (or loop) flow"

ofm units. Ifm = 1, it will also be designated a "unit path (or loop) ow." -The

notation in(P). or m(M1 , M2 , . . . , Mk) is used to denote such an assigameiit of

flows,. If P is, an A/B path,, it 'is readily seen that m (P) is ,an A/B. flow pattern.

of value m. If P is; a loop, m(P) is a zero flow pattern. Chain and cycle flows

are, of course, special instances of path and, loop flows respectively. The fol-

lowing lemma demonstrates that a unit A/B path, flow can always be decomposed,

tin a certain sense, into simpler components:.

Lemma 1: If P iS an A/B path, then 1(P) =(C)®Z,

where C is an appropriate A/B chain, Z is

a zero flow pattern, and 1(C) and Z are

conformal.

Proof: P can be represented as N,- 2, .--, . where N =A a -d

Nk = B. If P is a chIan the result follows immediately by taking C - P and

letting Z be the flow pattern that consists of Zero flow in every link of the net-

work,. If P is not a chain, there is a first index i such that Ni -N for some

I < it is readily seen that1J(P)= I(P)(® 1(S1) where P is the A/B path
.. . , N,' N. +1, . ,, and, S, isthe cycle;N., N.' ,...,N ' ' "" £" "

'I i- i "" k i J +j l ' i[

*If a given link M, N appears nore than once, say R times, thenm, R,
units of-flow are to be asssigned to M, N. , ,

13,



IfP 1 is a chain,, the proof is completed by setting C P and Z =. (S). If P1

is not a chain, the above procesS can be: repeated, expressing 1(P1 ) as 1(P2 )G1(S2 )

so that 1(P)= 1 ') So long as each successive path. P obtained

by this'process is not a chain, it 'Is always possibleto "extract" another path,
SPm+:so-that(P)=(Pmi),. l(Sm+) and 1(P) (Pm+)A :1(Sl)..- .Gl(Sm 1 J*.

But clearly the process must terminate since Pml has feWer links than P . It

follows that at some stage M,, M is a chain., Then if C = and

Z (SI)( .. 0 1(S), one has the. desired 'expression: for 1(P). Z and 1L(C)

are. confonnal since every link of P and of each of the, S m is directed in the

same sense as the corresponding link of P. KThis: comnpletes the. proof.

Although this resultis needed only in. the form stated, it is true that in.

general m(P) = m(C)+ Z', where C is the same A/B chain as above and, V is

obtained by multiplying all flows of Z by ,

Lemma 1 is, used to establish the following general, result concerning the

decomposition of any A/B flow pattern.-

Lemma 2: If F is an A/B flow pattern of value k > 0,

then

If, F- ).o)Di iq)+Z

where the CI's are appropriate A/B chains,

Z is a zero. flow pattern, and Z and the

I ( ) Iss are, conformal.

14



The proof involves a constructive procedure that produces the desired

decomposition and makes use of the evident fact that if Y(M) > 0 for a node M

there is at 'least one link M, N having positive flow, i.e.,, there is a link having

flow directed away from M. 'This property is true for any assignment of flows

to the links of a network, whether the assignment constitutes: a flow pattern in

the sense of this paper or not. (In the course of the proof,. F undergoes a series

of modifications that at intermediate stages determine flow assignments that are,

not patterns.)

Proof: Since Y(A) = k > 0, a link A. N having positive flow exists. Let

F denote the system of flows obtained from F by reducing the flow.in A t1 by

one unit (and consequently increasing the flow in N1 , A by one unit) and leaving

all other link flows unchanged. Then Y1 A) = k - 1 > 0, and Y(N 1 ) 1, relative

to F Hence there is a link N1N2 with. positive flow. Let F2 bethe system of12

flowsobtained from F1 by reducing the flow in N1N2 by oneyunit. Then Y(N 1 )= 0.

again, but now Y(N 2 )= 1 relative to F2: (unless N 2 is B).- Sollong as each suc-

cessive N is not B,, another link'N N with positive flow can 'be found, be-jJ J' ;+1

cause either N is an intermediate node, in which case Y(Nj)- 1 relative to F

or else N = A. In the latter case Y(Nj) = k', (This is true because -the preceding

linkwas of the form NjI A, and when a unit of flow Was subtracted from this

link in passing from F t-Fj, Y(A) was transformed back from k - 1 to k.)
InanycaseY(N1 )> 0 if N 4B. However, this procedure must terminate since

at each stage a unit of flow is subtracted from some link having positive flow.

Thus N = B at some stage J. But then

F=F ,(A N .N' B)

* 15



4 ,,

I-since the last term simply represents the collection of unit link flows removed, o

from. F to: obtain Fj* Moreover F is an A/B flow pattern of value k - 1, being

,the ,differenCe between F and a unit A/Bpath, flow. if k - 1 > 0 the above pro-

cedure can be applied to Fj, decomposing it into an A/B flow pattern. of value

k- 2 and a second unit A/B path. flow. Ultimately

1F Z<Di(, + mg)' .... (Pk)
Where Z! is :a zero flow, pattern, the P.'s are A/B paths , and, the nonzero link: --

flows in each of these component patterns are directed the same way as in F.

Applying lemma 1, each 1(Pi) can further be expressed as l(.Ci) (+ Zi , where
/,.

A C. is, a chain, Z. a zero flow pattern, and all link flows of 1(C) and Zi are,.

directed as. i P.. Thus

F =  ZEt, 1(Cj).- +', l(C2)( .. i , ,:"

where Z- - Z' Z , Z . . . and the component flow patterns are all

conformal. This completes, the proof.

Feasible Flow Patterns

A flow pattern in a capacitated network is said to be a "feasible flow

pattern" if the flow in. every link is feasible, i.e. if

-c(N,M1) <f(M,N) <c (M,,N)

for every directed link M, N. There are only a finite number, of distinct feasible
flow patterns, that can be associated with a given capacitated network. Letting

SC = max c(M, N) and tbe the number of undirected links, there. are at most

17.



2q + 1 distinct flows possible inany given link, viz., flows of 1, 2, . ... , C
L

.units in either direction or zero flow. Thus there are at most, (2C + 1) ways

.to assign flows to, all lirks;.* Of course most of these assignments are 'ot flow

Spattets in the, sense of this, paper.

Lemma 3, which establishes a useful result. concerning feasible flow

patterns states:

Lemma 3: If F is a feasible A/B flow pattern and

G ... ,Gk are conformal A/B,

flow patterns such that FC_ G1 C)G 2  :. -Gk

is feasible, then F T'S is also a feasible

A/B flow pattern if S is the sum of any

subset of the Gt's.

Proof: Let f, g1 , g2, . " , gk and s denote the corresponding flows in

an arbitrary directed link M, N. Since the giIs are all nonnegative or all non-

positive, one of the following relations is true:

f<_~sf~1 + g9 2  + " " 9+ k  ":

-> /

or

Sf g1 +g 2 + . .+gk< f +s<f

] /

*More precisely there are exactly Ili c(M,N) + c('N, M) + 11 ways to
assign flows to all links of a network, where the product ranges over all
undirected links (M, N).,
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The feasibility assumptions of the lemma also imply that both the following

relations hold:

-c(N,.M), f < (M,N)

and

-c(N, M) <f + g g 2+ + " gk <c(M,N)

It follows that -c(N, M) <f + s< c(MN); i.e., the flow in M, N corresponding to

the flow pattern FQi S is feasible., But since M,,N was arbitrary it'follows that

this flow pattern is feasible. This completes the proof.

Using lemmas 2 and 3 the self-evident fact can be rigorously established

that if a feasibleA/B flow pattern of value k exists in'a capacitated network,

feasible A/B flow patterns having values 0, 1, 2, . . , k exist. For if Fk
\ feasible and V(Fk) = k, Fk can be expressed as Z( C. (C1)QI. . . (I(Ck) ac-

cording to lemma 2. If Fi is defined as Z®,(C 1 )+. . .G1(Ci for
i = 1, 2, ... , k, and F0 = Z, according to lemma 3 F. is feasible for

i = 0, 1, . . , k. Moreover, since Z and the 1(Ci)s are conformal, the F.I's

are nested fl6w patterns in the sense that the magnitude of flow in each undi-

rected link is monotonic nondecreasing and its direction remains the same, as

i increases from 0 to k.

A "maximal A/B flow,-pattern" is a feasible A/B flow pattern F'whose

value V(F) is a maximum. Since there are only a finite number of feasible flow

patterns possible in a capacitated network,' a maximal, A/B flow pattern exists

... -for eery pair of distinct nodes A and B. ('Note that the flow pattern that consists



of zero flow in every link is, necessarily feasible and can be considered an A/B

I flow pattern for any distinct nodes A and B.)' The value of a maximal A/B flow,

pattern is called the "A/B capacity of the network."

"Cost" of a Flow Pattern,

Consider next an, A/B flow pattern,F in a weighted network. F is associated

with the nonnegative Integer T(F) defined by the relation:

T(V) j-1 (M, N)]

S

where S is an arbitrary enumerating, set and l, N) is defined as

I'(M,N):= l(M, N) if f(M, N)_>,0

and

l,(M, N) =l(N, M) if f(M <0
/

Thus T(F) is, obtained by multiplying the flow in each, link by the length,.

measured in the direction of the flow,, and summing over all links of the net-

work. If l(M, N is interpreted as the, cost of moving one. unit of flow from M to

N through M, N, T(F) is. simply the total cost associated with the flow pattern F.

T(F) is necessarily noniegative.

The following lemma expreSseS an importn relation between thecosts

of certain, flow patterns..

Lemma 4: If F, Gi and H are A/B flow pattern'sand G and

H are conformal, then

T(F® G$H) - T(F®G) >T(F®H) - T(F)

19i

¢,N



Proof:-, Let Q =T(F'CJGC®1) - T(F-Cl G) - T(FG+H) +T.(F).. Itis desired

to prove that, Q> 01 under the assumptions of this lemma. Let S be an ,enumerating

set chosen in such a way that f(C, D) > 0. for all, C, DEwhere f(C5, D) denotes the,

flow in CoD ccorresponding to pattern F., In the, following, discussion an, arbitrary

C, DES is: fixed. 'For conciseness the flows in C, D corresponding to the three

patterns are denoted. by fj g, and h and the lengths 1(0,1) and l(D, C) by 1 and 1.'

respectively. if QI(C, D) is defined by the relation

Q(, ) = f + g +hx, -If +g], x 2 - ]f+nx + I'x 4

where each x. is 1 or 1', depending on whether the corresponding expression

within absolute value signs is positive or negative, Q(C, D): represents, the con-

tribution to Q corresponding to C, D) and ' Q(C, D) =Q. Thus it, is suffcient

to show that each Q(C, D)> 0.

One pf the following sets of relations holds*

f >0,g>0, h>O (3)

or

f'> 0,g<0ofh < 0 (4)

sic f0 and. H are confrmal

'If relation 3holds, Q(CD)(f +g +h 1- (f +g)1-(f +h)1+ f 10.

If rel atlon 4holdsandif f + g+h>O0,' then f +g,> 0and f+h >,Oalso, and

Q(C, 1)) reduces-to the same expression as for relation, having the value -zero.



It remains to investigate the case when relation 4 holds and f.-+ g + h < 0.

In this case Q(C',D) reduces to one of the following expressions, depending on the

relative magnitudes of f, g, and h:

-(f+ g+ h)l- (f+ g)l- (f + h)l + f • 1o

-(f+ g+ h)l' + (f+ g)l' - (f+ h)1+f +

-(f + g +.h)l' - (f + g)l + (f :h)l' + f • 1

S(f+g+h)l + (f + g)l" +!(f + h)l' + f 1

When simplified these reduce, to the expressions

.(f+ g+ h) ('+ 1)

-hlt+ ),

f(l1+ )

These are all nonnegative since ! :4 g + h < 0, 1' + 1 > 0, and the conditions of

'. relation 4 hold. Thus Q(C,D) > 0 in all cases. This completes the proof

Thus the increment of cost resulting from adding H to F& G is at least

as great as that resultingzfrom adding H to F alone. (Thie result fails, to hold

if G and H are not conformal.)

Ideal Flow Patterns

Finally Consider a network that is both capacitated. and-weighted, and

let A and: B be two fixed, distinct nodes of the network. If a feasible A/B flow

pattern of value k exists', then one, call it F, exists such that T(F) is minimum,

sincel the feasible A/B patterns of value k are finite in number. Such a pattern

4,

.. 21



is. termed an "ideal A/B flow pattern of value.k., If the network is interpreted

as-a mathematical model ofa transportation network, an ideal A/B flow pattern

of value k can be interpreted as a pattern that moves k units of flow per unit

time from A-to B'at minimum cost, Thus ideal flow patterns-are in this sense

"best" flow patterns.,

The following lemma establishes, an importation relation betweeii certain

'ideal flow patterns.

Lemma .5:. If,.Ft_ 1 , F!, and Fi 1 are ideal flow patterns,

whose values are i -i, i, and i+1 respectively,

then

T(Fi+) -T(F.)_>..T(F.) - T(Fi 1)

Proof:! Fi+1 O Fi 1 is. an A/B flow pattern of value 2. As such it can

(according to lemma 2) be expressed as: 1(C1) '1(C 2)® Z where C1 and C2 are

A/B chains; Z is a zero flow pattern; and. 1(C1 ), 1(C 2 ), and. Z are conformal.

Since F 1 and I F. 1 & 1(C 1 )® 1(C O+ Z] are feasible patterns (the latter being

simply Fi+1 ),, it follows (according to lemma 4) that T(Fi-1 ) . T. Fi 1 "(C1)

®'1(C0)] + T(Fi_1 ®Z) - T(Fii). But Fi 1. 1 ®'Z is an A/B flow pattern of value

i-1 and is feasible ,(according to lemma 3). Hence T(Fi1  Z) - T(Fi- 1 ) 0

since FL1 is ideal. It follows that

T(F 11 ) >_TI Fi  1(C1 )@I(C2 )]

Applying lemma 4 again

TT FC 1(C > T( F1  1(- +T(F TC )'2- I )1,)]
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But FiC+( ,(Ci) and F1 ± 1 (C2 ) are A/B flow patterns of value i and are.

feasible (according to lemma 3). Since F. is ideal, ,T[ F &.1(C)] > T(F.)

Pid TI Fi.I,1(C2 j > T(Fi). Hence

T(Fi) > 2T(Fi) - T(Fii)

But this is equivalent to the inequality that was to be -established.

A sequence of real numbers a0 ,, a1 , a2 , , , ak is said to be convex

a "a. >a. -a_if +1

for i , 2, .... , k- i. If F0, Fi t '-... . L, Fk are ideal A/B flow patterns

of values 0, 1, 2, ... .., k respectively, where k is the A/B capacity of the net-

work, it follows that the sequence T(F 0 ), T(FI, . . , T(Fk) is a convex

sequence of nonnegative real numbers, the first of which is zero I The flow

pattern F 0 , which assigns zero flow to every link, is clearly ideal, and

T(F 0 ) = 0.]

In a certain. sense the convex sequence T(F0), T(F1), . , T(Fk) can

be considered as the "A/B cost profile": for a given, network. The remainder of

this paper is devoted to developing a general method for determining the A/B cost

profile: for a given. network.and given nodes A and B, and for finding specific

ideal flow patterns possessing these minimum costs. The problem is precisely

defined in the next section.

As a matter of interest, note. that given any finite convex sequence of

nonnegative real numbers a 0 , al, a2 , . . . , a a netWork exists having this

23:
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sequence as its A/B cost profile. in fact the network of Fig. 2 has the desired

properties. In this figure the numbers indicate the lengths, in both directions,

of the corresponding links. All link capacities are assumed to. be one unit. If

1 < i < n, the (in this case unique) ideal A/B flow pattern of value i consists of

:assigning one unit of flow from A to B in each of the paths AN B, J 1,2, ,.,i

and assigning zero flow in the remaining"links. Clearly T(F)= a1 for this pattern.

,(The intermediate nodes NI N2, . . , N are introduced merely to conform

with the requirement that at most one link join two distinct nodes.)

4-N

24 A

C©

Fig. 2--A Network Having A ,Given A/B .Cost Profilte

a -a 24
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I* STATEMENT OF PROBLEM AND SOLUTION lN PRINCIPLE:

FORMAL STATEMENT OF PROBLEM

'In the remainder of this paper the network under consideration is

assumed to be connected,, weighted, and capabitated and to have the property

that for every cycle S, 1(S): > 0.

The problem of immediate concern can be precisely stated-

Given a network of the above type , and

two distinguished nodes A and B, produce a

procedure that will

4 a) determine the A/B capacity k of

the network;

(b) determine a ,specific ideal A/B flow

pattern F. of value i, for i 1, 2,. k; and

(c) always terminate in a finitenumber

of steps.

Network flow problems of' various types have been the subject of

considerable study and a number of procedure3 having property (c), that can

be used to solve problem (a), or'(b) for any specified value of the flw pattern,

exist i the literature. Referencei is made to some of these after, the present

procedure is defined ;and its validity established.

In this section a procedure solving, the above problem in principle is

- given, accompanied by the proofs required to establish its validity. The
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development is incomplete inone respect, however. TheAssumption is made

that it is possible to design an algorithm for finding A/B chains of a certain

type. The next section of the paper produces this algorithm, which completes

the development.

AN EXAMPLE

The following example motivates the central concept involved in the

procedure,, viz., the effective length of a chain.

Consider the network shown in Fig. 3a. Here A, N2 , N3 , N4 , and B {
represent the nodes, and there are seven links as 'indicated. The. numbers above

and below each link represent its length and capacity respectively. (These apply

to both directed links: i.e., the network is fully symmetric.) An ideal A/B

flow pattern of value 0 is of course the pattern F0 , which assigns zero flow to

every link. The unit A/B chain flow F1 = 1(A, = N2 , Ng, N, B.) is-an ideal pat-

- tern of value 1. It happens to be the only one for this network. Note that

T (F) :4 and that F saturates: the directed links A,N 2 , 2 ' N, and N3 , N4 .
0 . N>l

One possible way to augment F and obtain an A/B pattern of value 2 G2,

would be to add 1(A, N 4 , B) to F1 . The resulting pattern is shown in Fig. 3b,

where the numbers and arrows indicate the magnitudes and directions of link
flows. But G is not ideal sinceT(G2 ) = 11, Whereas T(F 2 ) = 10, where F is

.2 2.=.0 we 2

the feasible A/B flow patternshown in Fig. 3c. F 2 is ideal, and there is no

other ideal pattern of value 2 in this netw6rk. F2 is also maximal since clearly

link _N4 , limits flow to two units at most. Thus the cost profile for this

network is 0, 4, and 10.

26
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Now considering the statement of the problem, especially property (b),I it is highly desirable that the procedure developed involves using Fi, once itis

found, as the starting point for constructing Fi 1 rather, than constructing Fi+i

independently. \

If' F2 is to be obtained by augmenting F1 in the example, the patternthat
-mus -b, ade o ,i PC

must be added to Fi .is F2  Ft = 1(A, N3 , N2 , N4 , B). It is not coincidental that
F 2 0 F1 is a unit A/B chaii 'flow. It is shown below that if F. is ideal and non-

2 11

maximal an ideal pattern, F+ 1 can always be obtained by adding an appropriate

unit A/B: chain flow. There may-be other ways also, of course. in the case of

the present network, since F and F2 are unique, it follows that F 2 F1 had to

be a unit A/B chain flow.

Once the above result is rigorously established, viz, that it is sufficient

to consider patterns ofothe form, Fi61(C) in generating Fi, it remains to! es-

tablish a simple criterion for determining which chain to use and to develop a

systematicmethod for finding a chain satisfying the criterion.

Consider again the chains involved in generating G2 , and F2 from F, in'

the example. These are C1 =-A,N 4 _, B and C2  A, N3 , 2 , N4 , B respectively.

In terms of length, C is preferable since 1 (C) =7 whereas 1(C2 ) =8. In

terms of increments of T," however, T(G2 ) - T(F1) =7 and T(F 2 ) '- T(F1 )= 6.

Thus C2 is effectively shorter. This notion is now made general and precise.
4

EFFECTIVE LENGTH

if F is a feasible, A/B flow pattern with associated link flows denotedby

Sf(M,--~N), where. MN Is-an arbitrary directed link, the- "effective length. of

28.
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M, N relative to: ', denoted by e(M N; F), is' defined as:

l(MN) if0< f(M, N) <c(M N)
e(MN;F.) -"l(N,) if f(M, N) < 0

i0 f f(M, N) c(M,1N)-

If C denotes any chain or cycle, the "effective length of C relative to 1",

denoted by e(C;F), is defined as:

e(C;) = e(M,;F)

C'

Note that e(M, N;F) -o if and only if F saturates M, ,N, and consequently

e(C; F) <oo if and only if non link of C is saturated. This leads to the following

result:

Lemma 6:, If F is a feasible A/B flow paern and C

is an A/B chain or a cycle, 'F 1(C),is

feasible if and only if e(C; F) is finite.,

Proof: A link MN is saturated if.and only if eiMN F) = N. Thu's if

e(C;F) is finite, no link of C is saturated, and so the flow in each link. of C can

be increased by at least one- unit.Hence F(C) is feasible, if e(C;F) is finite.

Conversely if Fe 1(C) is feasible no link of C is'saturated, and e(C;F) is finite

isince e(MN;F) is finite for M, NEC. This completes the proof.

*For convenience -0o is adjoined to the real number system. The o0y
properties of this element that are required are (a) if R is any real number,
R <oo; (b)it is not true that < (c)R + . ; (d) = o;and ,
(e). maint.,-o,. ,,* ,-9
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Lemma 7 is a fornal statement of the fact that the definition of effective

length satisfies the. property suggesting its introduction.

Lemma 7:, If F is a feasible A/B flow; pattern and C is

an A/B chain or a cycle such that e(C;F) is

finite, then T[ F® 1(C)] - T(F) = e(C;F).
Proof: Consider any M,NEC. If f(M,N) > 0, where f denotes :flow

corresponding to F, then the flow in M, N corresponding to F® !(C) is f(M, N) +"1

and T is increased in this link by the amountM N). If f(M, N)-. < 0, the flow in

M, N corresponding to F$ I(C) is f(M, N)+ 1 < 0 and that in , M is f(N, M) - 1 > 0,

thus T is decreased in this link by l(N, M) units or increased by -l(N, M). In

either case the increase in T with respect to MN equals e(M, N; F) as defined

above . Since M,N was arbitrary.. the result follows.

Thel following result, which is an. immediate -consequence of lemmas 6

and 7, plays an important part in the next section.

Lemma 8: If F is an ideal A/B flow pattern, then

e(S; F) >"0 for every cycle S.
U_ A'

1' Proof: According to lemma 7 T[ F® 1(S)];' - T(F) + e(S;F).4 If e(S;F) <0

it.follows that TI F®1(S)].. <T(F). But F® 1(S)is a feasible A/B flow pattern

according to lemma 6. and :haS value V(F), which contradictsthe assumption that

is ideal.-F is . /
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.CENTRAL THEOREMS

The set of maximal A/B flow patterns can, be characterized in terms of

the notion of effective length in the following way.

Theorem 1: A feasible A/B flow pattern F is maximal if

and only if e(C;F) = o for every A/B chain C.,

Proof: If e(C;F) is finite for some A/B chain C, then FG,1(C) 'is feasible

by lemma 6, and thus F is not maximal. Hence if F is maximal, e(C; F)- o for

all A/B chains. Conversely if F is not maximal, a feasible A/B flow pattern G
of value V(F) + 1 exists.. According to lemma: 2 GE)F can be written asi 1(C)C z,

where C is an A/B chain, Z is a zero flow pattern, and 1(C), and Z are conformal.

Since F and F(1(C)® Z = G are. feasible patterns, it follows from lemma 3 that

F®1(C) Is feasible also. Thus e(C;F) is finite according to lemma 6. Hence if

e(C;F) = a for all A/B chains, F is m'aximal. This completes the proof.

Since there are only a finite number of distinct A/B chains in a network
and each has a well-defined effective length rlative to anygiven feasible A/B

flow pattern F, a chain C1 exists that minimizes e(C;F). This chain is 'referred

to as a ',chain of shortest effective length relative to F , or as an "effectively

shortest" chain. It is a consequence of theorem 1 that e(C1 ;F) <-o if and only

if F is nonmaximal.

An ideal A/B flow pattern that .-inonmaximal ,can aiways be extended to

an ideal pattern of value one unit greater in a mnanner described in the next

theorem.
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Theorem 2: If F is an ideal, nonmaximal A/B flow[ pattern of value k and C is. any A/B chain

-of shortest effective length relative to F,

then F® 1(C): is an ideal. A/B flow pattern

of value k + 1.

Proof: Let, G be an ideal flow pattern of value k +,-1. Then according, to
lemma 2, .G®F can, be expressed as (')tjz, Where C' isan A/B chain, Z is a

zero"flow pattern, and 1(C') and Z are conformnu. Since F and F &i(C') -are

feasible, lemma 4 asserts that the following inequality holds: '

T(G) - T[ > T(F)

But .F(®Z is feasible, according to lemma 3, so that T(FG Z) - T(F) > 0 since
SF is. ideal. Thus T(G) >TI FG(C')]. Now FQ1(C') is also feasible, according

' to lemma 3, and has value k+ 1. It follows that F( GI(C'), is also: ideal. C" must

* minimize e(C;F) because if e(C";F) <.e(C';F) it would follow from lemma 7 that

T[ F1(C" < TI F®1(C.+ . It is also clear from lemma 7 that if Cis any

other chain with e(C;F) = e(C';F), then FI(C),is an ideal A/B flow pattern

whose value is k + 1. This completes the proof.

If the eidstence of a terminating algorithm that will, always find a chain of

shortestL effective length relative to an ideal flow pattern F, when F is, non-
1,,

maxima!,and will give a suitable indication when F is maximal is assumed,

then theorems 1 and 2 could-be used to form t", basis for a procedure for

solving the stated problem. However, this Would require proceeding in,

inciements of one unitof flow-a severe. limitation In any practical problem.
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Fortunately the convexity property established in lemma 5 can be used 'to

formulate a4 general method for accelerating the proceiss.

Let F.be, an ideal A/B5 flow pattern of value I in at network whose A/B:

capacity is atleast I+ 2. Then if the. A/B chain G1 mlinimizes

e(C;F),, F = F,® 1(C1) is ideal accordintgto theorem 2. Similarly

F1 ~ ~ 1 =F 1 1(C) is, ideal if' C2 minimlizes eCF1 1. Applying lemma 7

the following equations hold:

T(Fj+2) -T(F 1+,1) =eC; 1

'and

T(Fi+i) - T(F.) =e(Q;

But lemma 5 asserts' that

T(F+)- T(F.+1) > T(F., 1) -T(Fi)

,It follows that

Now suppose that, e(01 ;Fi+1) e(Cp .. Since, 02- minimizes e(Q; F. )it
11 1+ 7 2+1

follows that C~ is: an. effectively shortest chain relative to F1 ~ also,' so that

L 'zzG1+ 2 , =F1 i®,1')! Fio®(Ci1) Is an ideal A/B pattern of value i + 2. In

general. once a. chain Ci- that minimizes, e(C; F1 has been found Ideal Patterns

F1~1, Fi+g. . can be generated by adding 1(Ci) to- eachL preceding, patern.,

As long- as,.e(C;1F i+k i4 = e(,C1 ;Fj), it will be true that, FIFk G FIk (C)

-F® C+k( 1) is an ideal- A/B pattern of value I + k. Theorem 3 establishes a,

V 3
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criterion for determining the maximum number of times that the same unit chaint bflow 1(CP)can be added to, an ideal fiow pattern before the, resulting pattern

'Theorem 3 If F is an ideal nonmaximal A/B flow pattern

Sand, C is any A/Bchain of shortest effective

length relative to F, then FJ(C)'is an ideal

A/B flow pattern of value V(F),+ J, for

j=1, 2,... ,Q,where Q = min q(MiN;F)
C

'and q (M, N;F) is defined as

qM, N;F) = fNI - f(M, N) if f(M,N) 0
-f(M,, N) if f(M,. N) < 0

;Proof: From theorem 1 it is known -that e(M, N;F) is, finite for every

M,NC. Referring to the definition of e(M, N;F), two cases must be.considered.

.(a) f Y > O., In this case e(MN;F)= I(M-N). In fact e[ji N;Fk(C

=I(M, N')so. long as f(M, N) + k<c(MN); i. ,, so long as k <c(MN)- f(M, N).

'_, 1(C) can be added. to, F c(M, N)- f(MN) - times without altering the effective7

-%length of M, N. Thus 1(C): can be added toz:F one more time, 'I i.e., a total of'
-q(M ;F) timed: before'the effective lengthl 'hanges. In this case M is

saturated and el M,'N;F±)q(C)] =

.b) f(M, N) <0., Inthis case e(M, N;F) - -I(N, M). In fact e[ M, NFEkC

= -1(N, M) so long as k <-f(M, N). Thus the effective length of M, N changes only
idtg I( BM Y(, ;)1 ie.I. '/ if \ tttr adding 1(C) to F, -f(M, N) times, which is"the sahme as q(M, N;F) times.
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In this case the flow in. (M,N) is then reduced.to zero. , and, the effective length,

of M, N changes .from-l(N, M) to( N..

' Now if Q is taken to be.the minimum of the link q 's, It follows that for

etC;Fj,(C)j = e(C;F)

since ,this relation is true: for every directed link of C. !But it follows from the

remaks immediately preceding the statement of theorem 3 that iso long, as the :

effective length.of C remains. constant the, addition of (C) to each successive

pattern generates another Ideal pattern. This completes the pioof.

PROCEDURE

The:existence of an.algorithm, which. is referred to as the "effectivi,K

length algorithm", is assumed. As input it requires an enumerating set S

characterizing the network configuration and an ideal A/B flow pattern Fi of

value I, described by itemizing the flow f (MN), for all M.NES. As output it

produces the effective distance D1)'from A to B relative to F.. * If Di < ,0 (i.e.,

' ..... if Fi is nonmaximal) it also produces a specific 'effectively shortest chain C

A procedure that will always solve, the .stated. problem can now be

formally presented. The procedureinvolves repeating the following steps as

"+*"Effective distance'" meansi the, effective length of an effectively
shortest chain.
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many times as required to reach, a maximal flow pattern. At the start take

i = 0 and take as F the. ideal A/B flow pattern for which f(M, N) =0 for all00

(a) Apply)the effective distance algorithm to the network with flow

pattern F.. if D. (ie., if F. is, maximal):, thenterminate the procedUre

because the complete solution to the, problem is -obtained. Otherwise, pe'rform

:step b.

(b) Let C: be the effectively shortest chain, fourid in .a. Scan the links

of C. and determine Q. min Iq(M, ). as defined, in theorem 3>

(c) Construct an ideal A/B flow pattern F..A of valueT i + k as folnows.
for k 1, 2, . Q

For every M, NeS define f. as~~~i+k ':.

(1) f+k if MNcCi

(2) f. - kif N, McC.

(3) f, otherwise

Then repeat (a), with i. + Q replacing i and F replacing F...

Theorem 3 states that the flow patterns obtained in this Way are. ideal,

and: according to theorem: 1 the process will terminate when and only when,,

after step 'c is, completed, the resulting F is maximal.
i+Q.

RE LATION TO OTHER PROCEDURES

Maximtzing Flow: The principle of obtairing a maximal flow pattern by

adding a succession of unsaturated A/B chains, is. well known. Dantzig and
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Fulkerson ---present an efficient hand-computing scheme using this principle,

which is applicable to any capaci-tated natwork(with symmetric capacitids: excep t

that c(M,N) =0 if M =B or N =A]. Any procedure for determining unsaturated

A/B chains could be made the basis for a flow-maximizing'process.. Thepresent

procedure is a special instance, of this approach since it selects from all, A/B

chains !, one that minimizes e(C;,F).

Minimizing Cost for Stated Flow. If k is a nonnegative integer that.

does not exceed the A/B capacity -i the netwoll, the problem of' finding a feasi-

ble A/B flow patternF such that V(F) = k and T(F) isminimum is a special case

of the general linear-programing problem. Thus, in theory, a technique such

as the simplex method could be employed. However, in complex networks. -the

number of variables and cronstraints is so large as to make such a geneial

approach infeasible. ,

This problem, is also a .special. case 1 f the, class of network-flow problems,

known as "capacity-constrained transshipment problems." Fulkerson2 describes

this type of problem and shows that it is equivalent to an appropriate Hitchcock

problem. Thus: any procedure for solving the Hitchcock problem could also be

employed.

Finding a Complete Set of Ideal Flows. The problem of finding a family

of ideal A/B flow patterns, one for every feasible value of flow, is related to a

dynamic problem posed and solved by Ford and Fulkerson of the RAND Corpora-

3
tion. That problem deals with maximizing the total flow arriving at a node B

by the end of T ti e periods assuming. there isno flow in, trane"3 at time T = 0.

(The lengths .of links are assumed to.. be positive integers and are interpreted
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as- the number of time periods required to traverse the links..,),, The procedure

presented finds a family of solutions.-one for; every value of T. (These ,7

solutions remain the sameafter a certaind value of T is reached.) The pro-

cedure involves finding static flow patterns in the network, and it is shOwn that,

these flow patterns are ideal,, attleast when T is sufficiently large.

Decomposing Solutions into Routes. Although the procedure described
in this paper does not include a specific method for expressing Itheideal flow

patterns as the sum of conformal chain flows, * it is recognized thatthis is

desirable if one wants,,an operational plan for ,routing shipments at minimum
cost. The construction s'employed in the proof of lemma 2 could be formalized

into an algorithm for producing such a composition. f However, efficient

schemes for decomposing flows exist. Specifically the labeling process

termed "Routine IV' by Ford and Fulkerson3 performs this ftnction efficiently.

//

*The example given at the beginning of the. present section shows that
the chain flows used to synth 'ize an ideal pattern arei not necessarily conformal.

TReferring to lernma 2 the residual flow pattern Z 'is necessarily the

pattern that is identically zero. 'This can be shown to be a .consequence of the
assumption that every cycle C -has positive length. If Z were not identically
zero, the pattern F being decomposed could not be ideal.
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EFFECTIVE-LENGTH ALGORITHM

STATEMENT OF THE ALGORITHM.2

- Let F be, an ideal A/B flow pattern in a network, with link flows denoted

, by f(MNI~~lN). Consider the links of the network to be arranged in a sequence

(MiNi), i 1, 2. . , L. :The algorithm consists of the assignment, and

revision of. certain, quantities, or "labels", associated with the nodes. It is

patterned after the labeling procedures employed by Ford and Fulkerson for

solving various network-flow problems. Ford4 describes a labeling process

concerned with finding an A/B chain C that minimizes I(C) = T 1(, N).: The
C

present algorithm is an adaptation of that one, where the necessary modifications

were made to minimize Z e(MN;F) rather than 2: C(M_,N) In addition infor-

C C
mation is carried along that enables one to readily determine, a specific chain

that minimizes Z e(M,N;F). This is achieved by recording certain approach

C
links in the same manner as. the labeling process of Ford and Fulkerpn, 5

/1/

Formal description of the effective-length algorithm follows.

(a) Associate with node A the label D(A) =0, and let D(N) = SO for all

.,other nodes.

(b) Considering each link (Mi,N) in turn, perform the following

adjustments: , -

(1', If D(N)> D(M) +e(M iWF), replace D(Ni by this
smaller quantity and record Mi as the approach I!rk currently associated

with node N..
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(2 fD(M.): > D(N>~ e(N.,M.;F),.'replace D(M) by this smaller

1 1 1.. . ... 1 1. .

quantity and record N, M as the approach link associated with node. M.-

(3) If neither of the ,foregoing inequalities holds, make no change.

Repeat step b until the stage is r'eached when 3, applies for every link

(MN.) of the, network.

It is shown below that, this,-stage is, necessarily reached in a finite

number -of steps, that' at this time D(B) min e(C;F), for all A/B'chains C, and,

that the final set of approach links can be used to deMermine a, specific effectively

shortest A/B chain C, if' min e(C;F) <-o , i. e., if F is nonmaximal.
C

DERIVATION OF PROPERTIES OF THE ALGORITHM

The next five results (lemmas 9 to 13) state certain relations that exist

between finitely labeled nodes and approach links at any stage of the algorithm.

Assume that F is an ideal A/B flow pattern in a network, and that after starting

to apply the rules of the algorithm the process, is interrupted at an arbitrary

time. The labels and approach links described in the statements, and proofs of

these lemmas are assumed. to be those that exist at the. time of interruption

except where otherwise noted.

"'Lemma 9:, ' IfM, N is an'approach link, 'the following

relation holds ,-

D(N)_>D(M) +e(M,N;F).
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Proof: Let D(M) denote- the label of node' M at the time it wasuse to

assign the present label to node N., Then

,D(N) D(M) + e(M, N;F):

:as a result of the relabeling rules. "But D(M)> D(M) since labels are never

increased by the process. The inequality of the lemma follows.

Lemmo 10.: The set of approach links do not -contain a

subset that is a loop,

Proof: Suppose: N,, . . , (N = N) ;isloop, where each

N., Ni+l is an approach link. This loop is necessarily a cycle. (Since a node

never has two approach links associated: with it, the terminal nodes of the links

are all distinct.) According to lemma 9 then

DIN.) > D(N 1) + e(Ni, N; F)

for i -2, 3, . . . , k. Moreover strict inequality holds for at leastKone-,value

of L Let N. be the first of these k - 1 nodes to attain its present: label. Then

if D(N._I) denotes the label associated with N.1 at the time N. attained its.

present label, D(N._1) D(N. 1) and thus D(N._I) > DlN since labels are

nonincreasing. Thus

DI DN e i.
It

Adding the k -1 inequalities, at least one of which is strict, and noting that

1 k' 1 (Ni >eD(NeNi 1, N.Ni;FN
i=2 i=2 i=2
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4.3

:But then the cycle N1 , N 2 ,. Nk has negative effective length relative to F.I "'
This contradicts lemma 8. So no loop can exist:, and- the proof is completel. 0

Lemma 11: If D(N) < wfor a node N other than A, an A/N

chain C exists whose links are7 all approach links.

Proof: Since N has finite label, an approach link N2 , N is associated

with it. -'But then N2 has 'a finite labetVitnd an approach link N3 , N2* One can
continue to trace backward in this maimner until at some stage an approach link

N N is reached such that N. =A. For according to lemma 10 the same

k, k- 1 Lk

node is never reached twice, and there are a fi, nite number of nodes. Thus

C=A,N N , N 2  I N2 N is the desired chain.

Lemma 12: N Node A retainsdts original label of zero. V'

Proof:, Suppose node A is assigned a label ])(A) "n < ,. "Let ,-Abe,

the approach link associated with A. Then iN) < o, and an A/Ncain of
approach links A, Nk_, Nk-2  . . . , N2 , N can be produced according to

lemma 11. But then N, A, Nkl, . . " , N2 , N is a loop, which contradicts

lemma 10. This completes the proof.

Lemma 13: If D(N) < v the A/N chain C constructed in

Lemma 11 has the property D(N) > e(C;F).

It follows that the label associated with a

node is never less than the minimum ef-

fective distance from A to; that node.-
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Proof:, 'Let, C be denoted by N1 , N'2 , , ,Nr, where N= Aand.
N. .nequalit holds according

( rx= N', Then for, i = 2, 3, , r the following y

to lemma 9:

D.(N.) > D(N.) + e(Ni_ ,,Ni;P)

,. Adding these inequalities thefollowing is, obtained:

r

S> )(N.) + e(C;F)

i=2 i=!

Noting that D(.N1 )= 0 according to lemma 12, the desired result follows.

Now it can be shown that all labels, remain-constant after a certain

number of repetitions of step b (see the subsection "Statement of the Algorithm",).

Lemma 14: All node labels remain constant after at most n - 1

iterations of (b) where n is the number of nodes,

in the. network.

Proof:- Let N be any node other than A such that rin j e(C;F)] < , where

'the minimum is takenover all A/N chains C. Let CN = N 1 ,N 2 , . .,Nk be

any A/Nctain that attains this ninimum.. Clearly k< i sin e:no chain contains

the same node twice. So C has at most n 1 links.
N

After the first application of step b to all links, D(N 2 ) < D,(N 1 ) + e(N ;F)

is obtained since N2 is relabeled on the basis 6f' D(N1 ) + e(N1, N2 ;F) unless an

theven smaller label can be-assigned. In general on completion of the i application
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11+

16or i1, 2, . .k-,,hr (itis the label of' Ni 1 at the end-of the ,

otep bt

i (or beginning of the i+1 ) application of step b and D(N.) is thedabolf N.

that, the beginning of the, i application. GAdding these k I inequalities

k k-1 , .

SD(Ni) < ; D(Ni) + e(CN;F)

i=2 !=i

Since D(NI)= 0 it follows that

D(Nk) < e(C ;F)

On the other hand D(Nk) canynot be less than the minimum effective distance from

A;to N, since according to lemmas 11 and 13 an, A/N chain C of approach lihks

can be produced so that D(Nk) > e(C;F). It follows that C is an A/N chain of

minimum length, and that

D(Nk) ,= e(C;F)

Thus after at most k - 1 applications of step; b,,. D(N) attainsits minimum value.

j For nodes N such that min e(C;F) =c, D(N) is minimized from the start of the
'/

algorithm, so that the: statement applies to all nodes of the network..] This

completes the proof.
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The following theorem stunmarizes the foregoing results.

Theo'rem 4: If the effective-length algorithm' is applied to

a network with an ideal A/B flow pattern, F,

the process terminates (i. e., all labels re-

main constant), after at most n - 1 repetitions

of step b. Upon termination the final value

of D(N) for any node N:6A is equal to

min e(C;,F)1:,, where the minimum is taken

over all A/N chains C. Moreover if D(N) < o

a chain attainingnhis minimum can be found

by tracing back along approach links, as in

the proof of lemma 11.

Thus the effective-length algorithm possesses the properties that wereL

assumed in the previous section. As a by-product it determines the: effective

distance from A to every other node, although only the effective distance from

A to B can be used in the procedure.

Note that the: sequencing of the algorithm,, whereby the links are scanned

in some fixed order in step b, is not claimed to. be as efficient as possible.

61
Pollack and Wiebenson summarize a number of efficient labeling algorithms

'whose objective is to minimize'1(C) over all A/B chains-C, and it appears that

any of these might be adapted to minimize e(C;F). 'These are generally

sequenced in such a way that all links, terminating in a given node are scanned
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together, and, the, nodes are taken in a certain order., The authors of this. paper
VIK

are, not in a position to evaluate the relative efficiencies of the v arious schemes

~if Programed for a digital computer..- -

ff Y

P;'
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GLOSSARY OF PRINCIPAL SYMBOLS

Symbol Meaning u/

(M, N) Link joining nodes M and N (considered

undirected),

M, N' Directed link from M to N

M1 , I 2, , M An, MI/Mk path if M k; a oop if

1 k:

c(M, N) Capacity of M, N k'a nonnegative integer).

l(M, N) Length of M, N (a nonnegative real number)

1(2, M2 , .. , Mk) Length of path or ioop

f(M, N),, f(N, M) Flow in (M, N) expressed relative to M,,N

and N, M, respectively

Y(M) Net output at node M (flow output minus,

input)

V(F) Value of A/B'flow pattern, F[ equal to

Y(A) and -Y(B)]

Sum of A/B flow patterns F and G

F -. G Difference between A/B flow patterns.

.,-and G

,r(M 1 , M2 , .... , Mk) The flow pattern obtained by assigning r

units offlow to ,each Mi, Mi and zero

.to other' links,,

47
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IT(F) "Cost" of fiow pattern F (length times"

flow, summed over all links.)

e (M,, N; F) 'Effective length, of M', N relative to flow

pattern F

e (G;F) Effective length of chain or cycle-C

relative to flow pa.ttern F

D(M) Label assignd tJo- node M by effectivei,

length algorithm. ~

-7r,
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